

Development of Metal Fuel Fast Reactor in CRIEPI

January 15th 2020 Central Research Institute of Electric Power Industry

Hirokazu Ohta

© CRIEPI 2020

Contents

- Metal Fuel Fast Reactor Cycle
- History of Metal Fuel Development
- Requirements for Metal Fuel Development
- Metal Fuel Development
 - (1) Metal fuel fabrication
 - (2) MA-containing metal fuel irradiation experiment
 - (3) Irradiation behavior analysis code, ALFUS
- Metal Fuel Core Development
 - (1) Demonstration scale core design
 - (2) Flexible MA transmutation system development
 - (3) Core Safety Analysis
- Summary

Metal Fuel Fast Reactor Cycle

History of Metal Fuel Development

OAdopted as experimental reactor fuels at early stage of FBR development (1940's-)

• Pyro-reprocessing development \rightarrow MA recovery etc.

Requirements for Metal Fuel Development

Metal Fuel Development in Japan

Started in 1986

Japanese utilities including CRIEPI participated in part of IFR program

Domestic requirements for fast reactor fuel development

- Accumulation of domestic fabrication & irradiation experiences
- Feasibility of MA-containing fuels
- High temperature & high burnup use for commercialization
 (Cladding temperature ~650 °C, Peak burnup 15-20 at.%)
 - → Limited irradiation data
 - Concerns for high temperature use
 - •Liquid phase formation between fuel alloy and cladding

Ex-reactor diffusion couple experiments suggested a liquid phase is formed at > 650 $^{\circ}$ C when Pu enrichment is < 25 %.

Metal Fuel Development (1) Metal fuel fabrication (Joint Study with JAEA)

Injection Casting Fuel Fabrication

Engineering scale ~20kg/batch test Φ = ~6mm, L= 400mm, ~500 U-Zr slugs were fabricated by injection casting.

U-Pu-Zr Fuel Pin Fabrication

Irradiation Conditions for U-Pu-Zr fuel pins in Joyo

		Cladding temperature	Smear density	Burnup	Purposes
ıg	(1)	640℃	77.4 %		Confirmation of liquid
	(2)	640°C	74.4 %	3 at.%	phase formation
	(3)	620°C	77.4 %		Acquisition of fuel-
	(4)	620°C	74.4 %	o at.%	Interaction data
	(5)	620℃	77.4 %	10 + 1/	Acquisition of fuel-
	(6)	620℃	74.4 %	TU at.%	Interaction data

Maximum linear heat power : 500W/cm

6 U-Pu-Zr fuel pins were successfully fabricated.

Irradiation test will be started in 2022.

T. Ogata et al., in: Proc. Nuclear Fuels and Structural Materials for the Next Generation Nuclear Reactors, Anaheim, California, June 8-12, 2008. K. Nakamura et al., in: Proc. Global 2011, Makuhari, Japan Dec. 11-15, 2011.

Metal Fuel Development (2) MA-containing metal fuel irradiation experiment (1/3)

(Joint Study with JRC-Karlsruhe)

Purposes: Irradiation behavior data of MA-containing metal fuel are obtained. MA transmutation performance with metal fuel are demonstrated.

3 types of MA-containing U-Pu-Zr fuel pins were fabricated by 1994.

3 sets of irradiation capsules were prepared to achieve different target burnups of 2.5at.%, 7at.% and 10at.%. Irradiation experiments were performed in Phenix, France during 2003-2008.

MA-containing metal fuel pins for irradiation experiment in Phenix

- Cladding outer diameter: 6.55mm
- Thickness: 0.45mm
- Fuel slug diameter: 4.9mm
- Total length of metal fuel = 485mm
- MA-containing segment length
 - = 10mm(U-19Pu-10Zr-2MA-2RE) 5mm(U-19Pu-10Zr-5MA-5RE) 5mm(U-19Pu-10Zr-5MA)

MA=Np, Am, Cm RE=Y, Ce, Nd, Gd

Metal Fuel Development

(2) MA-containing metal fuel irradiation experiment (2/3)

(Joint Study with JRC-Karlsruhe)

- ➢Cladding peak temperature ~570°C, Peak linear power ~330W/cm
 - 3 different burnups were achieved with 120 EFPDs^{*}, 360EFPDs and 600EFPDs of irradiation. *_{EFPDs=effective full power days}
- Post-irradiation examinations of low-burnup METAPHIX-1 fuels and middle-burnup METAPHIX-2 fuels are ongoing at JRC Karlsruhe.
- ≻ High-burnup METAPHIX-3 fuel pins are stored after non-destructive tests.
- Metallography of METAPHIX-2 fuel containing 5wt% MA & RE irradiated up to ~7at.% burnup revealed that

Radial distribution of Matrix elements

- radial migration of matrix elements of U and Zr occurs,
- precipitates of Am & Cm containing RE grow to \sim 100 μ m during irradiation,
- Am & Cm contents in precipitates ~25wt%,
- part of MA precipitates contain noble metal FPs.

Cross sectional view of U-19Pu-10Zr-5MA-5RE

Precipitates

Composition analysis results of MA precipitates

No trace of fuel melting fuel integrity was maintained.

Metal Fuel Development

(2) MA-containing metal fuel irradiation experiment (3/3)

- Chemical analysis of METAPHIX-1 and METAPHIX-2 fuels
- > Irradiation burnups were evaluated based on the composition analysis results.
 - \rightarrow Target peak burnups (METAPHIX-1 ~2.5at.%, METAPHIX-2 ~7at.%) were almost attained. (See Table 1)

MA transmutation performance were evaluated from the changes in isotope ratios. Burnup calculation properly predicted the chemical analysis results (See Fig. 1)

 \rightarrow MA transmutation performance with metal fuel were demonstrated.

➢MA transmutation result:19.8±5.1% (METAPHIX-2, U-Pu-Zr-5MA sample)

Table 1	Burnup evaluation	based on chemical	analysis results [at.%]
---------	-------------------	-------------------	-------------------------

			METAPHIX-1			METAP	HIX-2	
Sam	ple	U-Pu-Zr	U-Pu-Zr -2MA-2RE	U-Pu-Zr -5MA	U-Pu-Zr	U-Pu-Zr -2MA-2RE	U-Pu-Zr -5MA	U-Pu-Zr -5MA-5RE
r	¹⁴⁸ Nd	2.1	N/A ¹	2.3	5.7	N/A ¹	5.4	N/A ¹
ato	¹³⁹ La	2.2	2.5	2.5	5.9	5.8	5.3	5.6
dic	¹⁰² Ru	2.2	2.4	2.3	5.5	6.4	6.2	5.8
<u> </u>	¹⁰⁴ Ru	2.1	2.5	2.3	5.4	6.0	5.9	5.4

¹: Not applicable

Fig.1 Comparison between calculation and chemical analysis on changes in isotope ratios of Pu, Am and Cm after fuel fabrication

Metal Fuel Development (3) Irradiation behavior analysis code, ALFUS (1/2)

Phenomena modeled in ALFUS (ALloyed Fuel Unified Simulator)

Metal Fuel Development (3) Irradiation behavior analysis code, ALFUS (2/2)

(Expert meeting of OECD/NEA)

- > A mechanistic model code for metal fuel irradiation behavior analysis, ALFUS is developed in CRIEPI.
- Benchmark analysis for metal fuel irradiation experiments by expert group on innovative fuel (EGIF) organized by OECD/NEA was conducted. (See Table 1)
- > ALFUS can predict metal fuel behavior in various metal fuel irradiation experiments (See Fig. 1)

Table Metal fuel irradiation experiments and analysis codes participating in benchmark analysis by EGIF

Organization	IN	L	KAERI	CRIEPI
Irradiation Experiment	AFC-1H	X501	SMIRP-1	METAPHIX-2
Fuel Composition	U-Pu-Zr-Np-Am	U-Pu-Zr-Np-Am	U-Zr/U-Zr-Ce	U-Pu-Zr-Np-Am-Cm-RE
Calculation Code	NON	NON	MACSIS	ALFUS

Fig. Comparison of experimental results and ALFUS analysis for metal fuel irradiation behavior of axial elongation and fission gas release

© CRIEPI 2020

N. Chauvin, et al., 'Benchmark Study on Fuel Performance Codes for Fast Reactors', Proc. GLOBAL2019. OECD/NEA, "Benchmark study on minor actinide bearing fuel performance codes", NEA, OECD, Paris, forth coming. 11

Metal Fuel Core Development (1) Demonstration scale core design (Joint Study with JAEA)

- Design study of demonstration scale 750MWe class metal fuel core
- > Irradiation behavior of metal fuel is reflected in the design.

Reactivity change due to axial elongation of fuel slug & migration of bond sodium during irradiation were considered quantitatively. (Fig. 2)

- Reduction of coolant void reactivity to < 6\$</p>
 - Flattening core shape with large diameter fuel pin (Fig. 3)

ŀ	e 1 Major Spec. of scale core	demons	tration	b ir	
	ltem	Unit	value		
	Output	MWe	750		
	Outlet / inlet temperature	°C	550/395		
	Cladding peak temp.	°C	650		
	Cycle length	days	~700		
	Refueling batch	-	3		
	Fuel pins/assembly	-	271		
	Smear density	%TD	70-75		
ĺ	Zr content	Wt%	10-6		

Fig. 2 Fuel slug elongation and oond sodium migration during rradiation Bond sodium migration Axial elongation Before irradiation After irradiation start

Irradiation Behavior

Net

Axial Elongation=8%

Bond Sodium Migration=90% :+4.38\$

Fig. 3 Core characteristic change by adjusting fuel pin diameter

- Single Pu enrichment core design to suppress power distribution fluctuations during burnup period. Single Pu enrichment

- Adjustment of the inner / outer core power with Zr content and smear density

:-2.22\$

+2.16\$

Highly concentrated

MA-containing metal

13

fuel

Metal Fuel Core Development (2) Flexible MA transmutation system development (MEXT project)

Feasibility of an efficient MA transmutation & Pu utilization systems by combining advantages of MOX fuel cycle & metal fuel cycle is investigated.

MOX fuel cycle: Long domestic R&D experiences & Abundant infrastructure

Metal fuel cycle: Suitable for MA recycling

A MOX fuel core partially loaded with highly concentrated MA-containing metal fuel subassemblies (SAs) is design to achieve both core safety and high MA transmutation performance.

Item	unit	Homogeneously MA loaded MOX fuel core	Highly concentrated MA- containing metal fuel loaded MOX fuel core	
Number of SA	-	274	274	
MA-containing metal fuel SA	-	0	60	
Pu enrichment IC/OC/Metal SA	wt%	18.6 / 24.6 / -	18.7 / 24.8 / 18.5	
MA content IC/OC/Metal SA	wt%	3.0 / 3.0 / -	1.4 / 1.9 / 16.0	
Coolant Void Reactivity	\$	6.0	6.0	
Doppler Coefficient	Tdk/dT	-4.6 × 10 ⁻³	-4.4 × 10 ⁻³	
MA loading	kg/batch	175	353	~~<
MA transmutation	kg/GWe-y	53	89	Highly concentr

Highly concentrated MA-containing metal fuel loaded MOX fuel core configuration

MA transmutation increases to \sim 160% while maintaining core safety parameters .

Metal Fuel Core Development (3) Core Safety Analysis (1/4)

Passive Safety Features of Fast Reactors: Mechanism of core radial expansion reactivity

- Subassemblies are loaded with gap
- Without temperature gradient

When and how much negative reactivity is inserted depends on the core shape during normal operation, i.e., remaining gap width and assembly contact conditions.

Normal operation

- Interpad gap closing due to thermal expansion
- Assembly deformation due to irradiation & temperature gradient

Accident conditions

- Rapid increase in temperature
 - \rightarrow Increase in thermal expansion
- Changes in thermal bowing of assemblies
- Radial expansion of core → negative reactivity
 Passive shutdown & core damage prevention

Metal Fuel Core Development (3) Core Safety Analysis (2/4)

ULOF event analysis for large scale metal & oxide fuel fast reactors

Pump coast down (Flow halving time) = 10 sec.

Potential to avoid coolant boiling in metal fuel core due to large negative feedback reactivity by radial expansion.

→ Precise core deformation analysis is required.

© CRIEPI 2020

15

Metal Fuel Core Development (3) Core Safety Analysis (3/4) (METI project*/CNWG NE08)

A detailed core bowing analysis code required for precise evaluation of the radial expansion reactivity expected as one of the core damage prevention measures is developed.

Radial expansion reactivity: Thermal expansion & deformation of subassemblies (SA) due to temperature increase

shell model → ARKAS cellule

H. Ohta, 'VERIFICATION OF DETAILED CORE-BOWING ANALYSIS CODE ARKAS_CELLULE WITH IAEA BENCHMARK PROBLEMS', Proc. of GLOBAL 2019.

Metal Fuel Core Development (3) Core Safety Analysis (4/4) (METI project*/CNWG NE08)

- A multi-physics particle method* (MPPM) code is developed that can simulate the metal fuel failure behavior such as local melting, breakage, dispersion and solidification, reflecting the shape of the fuel pins.
 ※ Particle method: A numerical analysis method that can handle melting, solidification, large deformation, and large movement of materials.
- Metal fuel failure behavior considering eutectic reaction between fuel and cladding was preliminary analyzed.
 Feasibility of melt-solidification reaction analysis involving eutectic reaction was confirmed.
- > Multi-pin bundle failure behavior will be analyzed.

Preliminary analysis result

Summary

Development of metal fuel fast reactors in Japan has been conducted since 1986 according to the domestic fast reactor development targets.

1. Metal Fuel Development

- The applicable conditions for metal fuels, i.e. T_{clad} < 650 °C, Pu enrichment < 25 %, were experimentally determined.
- ~500 U-Zr slugs were fabricated by injection casting.
- Six U-Pu-Zr metal fuel pins were successfully fabricated for the purpose of irradiation experiment in Joyo.
- Irradiation experiment of MA-containing metal fuel pins were completed to target burnups of ~2.5at.%, 6at.% and ~10at.%.
- PIEs for low burnup and middle burnup fuels are ongoing.
- An irradiation behavior analysis code, ALFUS has been developed.

2. Metal Fuel Core Development

- A demonstration scale metal fuel core was designed.
- A MOX fuel core partially loaded with highly concentrated MA-containing metal fuel SAs was design to achieve both core safety and high MA transmutation performance.
- Advanced analysis codes have been developed for improving core safety. ex.) ARKAS_cellule, MPPM, etc.

Various R&D activities are being promoted with the cooperation of domestic and international research institutes and the financial support by national projects.

- · JAEA, METI, MEXT,
- ANL, INL, JRC-Karlsruhe, etc.

Thank you for your attention!!