Thermal-Hydraulic Performance of Printed Circuit Heat Exchanger in Supercritical CO₂ Cycle

K. Nikitin, Y. Kato, L. Ngo

Research Laboratory for Nuclear Reactors
Tokyo Institute of Technology
Study Incentives

- Supercritical CO\textsubscript{2} cycle demonstrates some advantages in comparison to He cycle
 - higher cycle efficiency (Y. Kato, 2003),
 - better turbomachinery (Y. Muto, 2003),
 - power generation cost is expected to be smaller.

- High efficiency recuperator is a crucial component of supercritical CO\textsubscript{2} cycle. The targeted recuperator effectiveness is as high as 95%.

- PCHE is a promising heat exchanger because it
 - is able to withstand the pressure up to 50 MPa and the temperature up to 700\textdegree C (reliability),
 - has a high compactness and high efficiency (cost reduction).

PCHE = Printed Circuit Heat Exchanger
What is the PCHE?

- Fluid flow channels are **etched chemically** on metal plates.
 - Typical plate: thickness = 1.6mm, width = 600mm, length = 1200mm,
 - Channels have semi-circular profile with 1-2 mm diameter.
- Etched plates are stacked and **diffusion bonded** together to fabricate a block.
- The blocks are then welded together to form the complete heat exchanger core.
Construction of PCHEs

Plate stacking

Diffusion bonding

the bond strength is achieved by pressure, temperature, time of contact, and cleanliness of the surfaces
Advantages of PCHE

- Photo-etching technology:
 - Micro channels with smaller hydraulic diameter D_h:
 - Pressure capability in excess of 50 MPa.
 - Compact size (L) or Higher efficiency (98%).
 - No plate-fin brazing:
 - Manufacturing cost reduction.

- Diffusion bonding technology:
 - Maintain parent material strength:
 - Extreme temperature from cryogenic up to 700°C.
Experimental Loop

Symbols Used:
- **T**: thermocouple
- **P**: pressure meter
- **ΔP**: differential pressure meter
- **FR**: flow rate meter

Diagram Details:
- **CO₂ tank**
- **Compressor**
- **Cooler 1**
- **Cooler 2**
- **Oil Separator**
- **PCHE**
- **Heater 1**
- **Heater 2**
- **Pressure Reducer**
PCHE Test Section

Dimension of 896 x 76 x 71 mm and a dry mass of 40 kg

<table>
<thead>
<tr>
<th></th>
<th>Channel geometry (mm)</th>
<th>Area, (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Channels number, (n)</td>
<td>Diameter, (D)</td>
</tr>
<tr>
<td>Hot side</td>
<td>144</td>
<td>1.69</td>
</tr>
<tr>
<td>Cold side</td>
<td>66</td>
<td>1.69</td>
</tr>
</tbody>
</table>
Experimental Conditions

<table>
<thead>
<tr>
<th>No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure, MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold side</td>
<td>6.5</td>
<td>7.4</td>
<td>8.5</td>
<td>9.5</td>
<td>10.2</td>
</tr>
<tr>
<td>Hot side</td>
<td>2.2</td>
<td>2.5</td>
<td>2.8</td>
<td>3.0</td>
<td>3.3</td>
</tr>
<tr>
<td>Temperature, °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold side</td>
<td>90-108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot side</td>
<td>280-300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow rate, kg/h</td>
<td>-</td>
<td></td>
<td></td>
<td>From 40 to 80 with 5 kg/h increment</td>
<td></td>
</tr>
</tbody>
</table>
Overall Heat Transfer Coefficient, \(U \)

- LMTD method:

\[
U = \frac{1}{2} \left(\frac{|Q_c| + |Q_h|}{A_h F_G \frac{(T_{h,i} - T_{c,o}) - (T_{h,o} - T_{c,i})}{\ln\left(\frac{(T_{h,i} - T_{c,o})}{(T_{h,o} - T_{c,i})}\right)}} \right)
\]

where

\[
Q_c = W_c (h_{c,o} - h_{c,i})
\]

\[
Q_h = W_h (h_{h,o} - h_{h,i})
\]

- \(A \) - Heat transfer area, 0.664 m\(^2\)
- \(F_G \) - Geometric factor, 0.9624
- \(h, c \) - hot, cold side
- \(o, i \) - outlet, inlet
Heat Loss Estimation (1)

Total value:

1) From outer surface temperature of PCHE insulator

\[Q_{loss} = \sum_{i=1,10} A_i^{ins} \left[\varepsilon \sigma (T_{s,i}^4 - T_{surr}^4) + h_{\text{conv},i} (T_{s,i} - T_{surr}) \right] \approx 110 \sim 120 \text{ [W]} \]

2) From heat balance

\[|Q_{loss}| = |Q_h| - |Q_c| \]

From heat balance

<table>
<thead>
<tr>
<th>Pressure range, [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5-2.2</td>
</tr>
<tr>
<td>7.4-2.5</td>
</tr>
<tr>
<td>8.5-2.8</td>
</tr>
<tr>
<td>9.5-3.0</td>
</tr>
<tr>
<td>10.2-3.3</td>
</tr>
</tbody>
</table>

From outer surface temperature

Heat loss, [W]

Flow rate, [kg/h]
Heat Loss Estimation (2)

Effect on the outlet temperatures:

3) From 2D FLUENT CFD calculations (with(2)/without(1) heat loss)

4) From the heat loss compensation experiments

\[Q_{\text{loss}} \approx 0 \]

\[T_{\text{PCHE-surf}} = T_{\text{near-heater-surf}}^k \]

\[\Delta T_{\text{hot, out}} : W_{\text{hot}} \times \int_{T_{\text{hot, out}}}^{T_{\text{hot, out}} + \Delta T_{\text{hot, out}}} C_p(P(T), T) dT = -0.35Q_{\text{loss}} \]

\[\Delta T_{\text{cold, out}} : W_{\text{cold}} \times \int_{T_{\text{cold, out}}}^{T_{\text{cold, out}} + \Delta T_{\text{cold, out}}} C_p(P(T), T) dT = -0.65Q_{\text{loss}} \]
Overall heat transfer coefficient, U

$$U = (18.6 \pm 6.8) + (0.105 \pm 0.002) \times \text{Re}, \quad 2 \times 10^3 < \text{Re} < 6 \times 10^3$$
Pressure factor, \(f_P \)

\[
\begin{align*}
 f_{P_{\text{hot}}} & = (0.032 \pm 0.002) - (1.01 \times 10^{-6} \pm 6 \times 10^{-8}) \times \text{Re}, & 2 \times 10^3 \leq \text{Re} \leq 6 \times 10^3 \\
 f_{P_{\text{cold}}} & = (0.066 \pm 0.001) - (1.11 \times 10^{-6} \pm 7 \times 10^{-8}) \times \text{Re}, & 6 \times 10^3 \leq \text{Re} \leq 12 \times 10^3
\end{align*}
\]
PCHE cross-section
Head loss in PCHE

\[\Delta p = \rho g \Delta H = \sum m \rho_m K_b \frac{U_m^2}{2} + \sum m \rho_m 0.316 \text{Re}^{-0.25} \frac{L_a U_m^2}{md} \]

loss in elbows + loss in a straight pipe

I. \[K_b = K_1 * K_2 * K_3 \]
 from Hydraulic Engineering, A. Lencastre, 1987

II. \[K_b = 0.946 \sin^2 \left(\frac{\theta}{2} \right) + 2.047 \sin^4 \left(\frac{\theta}{2} \right) \]
 from JSME Textbook, 2003

III. CFD FLUENT

\[\left| \frac{\Delta p_{\text{calc}} - \Delta p_{\text{exp}}}{\Delta p_{\text{exp}}} \right| = 14 - 37\% \]

\[\left| \frac{\Delta p_{\text{calc}} - \Delta p_{\text{exp}}}{\Delta p_{\text{exp}}} \right| = 6 - 32\% \]

: N/A yet
PCHE’s Effectiveness

Effectiveness: \[
\eta = \frac{\dot{Q}}{\dot{Q}_{\text{max}}} = \frac{C_c(T_{c,\rho} - T_{c,i})}{C_{\text{min}}(T_{h,i} - T_{c,i})}
\]

PCHE’s effectiveness reaches value up to 98.7%.

1% of recuperator effectiveness ➔ the gas turbine cycle efficiency 0.6%
MUSE Code Simulation

- Developed for **plate-fin** heat exchanger,
- Use **Wavy fin** plate heat exchanger model,
- This model is the most similar model to our tested PCHE.
The different slopes may be due to:

- Difference of PCHE from wavy fin model,
- Neglect of cross flow in the distributor sections.
Conclusions

- The overall heat transfer coefficient and pressure loss factor of PCHE were investigated both experimentally and numerically; the empirical correlations are proposed.

- The method to take into account the heat loss for overall heat transfer coefficient estimations has been established.

- The overall heat transfer coefficient varies from 300 to 650 W/m²K while the heat transfer effectiveness reaches up to 98.7%.

- PCHE might be judged as a promising compact heat exchanger for the high efficiency recuperator.

- The experimental data are currently used for CFD FLUENT code verification and developing the new heat exchanger type.